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Abstract 

Working in the context of spontaneously broken gauge theories, we show that the 

magnetically charged Reissner-Nordstriim solution develops a classical instability if the 

horizon is sufficiently small. This instability has significant implications for the evolution 

of a magnetically charged black hole. In particular, it leads to the possibility that such a 

hole could evaporate completely, leaving in its place a nonsingular magnetic monopole. 
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The Reissner-NordstrSm solution to the coupled Einstein-Maxwell equations describes 

a spherically symmetric black hole endowed with electric or magnetic charge. Although 

the solution makes mathematical sense in a theory involving only gravity and the electro- 

magnetic field, its physical motivation is somewhat tenuous unless the theory also contains 

particles carrying such charges. This remark has little consequence in the case of electric 

charge, since one only need add a field whose elementary particles are electrically charged. 

The addition of magnetic charge to the theory is less trivial, but can be accomplished by 

enlarging the structure of the theory so that electromagnetism emerges as the unbroken 

subgroup of a spontaneously broken gauge theory in which magnetic monopoles arise as 

topologically nontrivial classical solution [I]. The incorporation of these additional fields 

into the Reissner-Nordstr6m solution is rather straightforward [2], and changes neither the 

metric nor the magnetic field. However, as we will show in this letter, the presence of these 

fields can render this solution unstable. This instability arises at the level of the classical 

field equations and does not depend on any quantum mechanical process. It has important 

implications for the ultimate fate of magnetically charged black holes. 

The magnetically charged Reissner-Nordstrijm solution to the Maxwell-Einstein equa- 

tions has a radial magnetic field with magnitude QM/? and a metric which may be written 

da2 = Bdt’ - Ad? - r’db” - ? sinZBd# 

where 

There is a physical singularity at r = 0 which is hidden within a horizon at 

w=MGf,/m 

provided that the mass M is greater than 

MA = &IQ~IM~ 

(1) 

(2) 

(3) 

(4) 

where the Planck mass Mp = G-l/‘. If IQml >> 1 ( as will be the case for the weak gauge 

coupling we will assume) the horizon of the critical Reissner-NordstrGm black hole is at 

PH > M;‘, and is thus in a region where quantum gravity effects can be neglected. 
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This solution is readily incorporated into a theory possessing classical magnetic mono- 

pole solutions. For definiteness we consider an SU(2) gauge theory which is spontaneously 

broken to U(1) by the vacuum expectation value of a triplet Higgs field +. The action is 

S = /d%G [-&R+h,tlr.] 
where 

L hotter = -;F,v. F” + ;D,+. D”P - V((ip() (6) 

F,, = &,A, - &A, - eA, x A, (7) 

D,+ = a,+ - eA, x 0 (8) 

and vector notation refers to the internal W(2) indices. The potential V(l+l) is assumed 

to have a minimum at IpI] = V; to avoid a cosmological constant, V must vanish at this 

minimum. This theory contains nonsingular monopoles with magnetic charge QM = l/e 

and mass M,.,,,,,, N 47rv/e, provided that v s Mp. (For v larger than this, the would-be 

monopoles are so massive that they become black holes themselves [3,4].) 

The metric for the Reissner-Nordstrijm solutions of this theory is precisely the same 

as that given above for the Maxwell theory. For vanishing electric charge and magnetic 

charge QM = n/e, the matter fields are, up to a possible gauge transformation, 

a- = v qe, 4) (9) 

A,, = 16 x a,2 
e 

where 8 is a unit vector with winding number n; a convenient choice, which we adopt 

henceforth, is 0 = (sin 0 cos n$, sin B sin+ cos 0). These imply that 

Fe+ = -F+e = 1. sine 0 
e (11) 

This lies entirely within the electromagnetic U(1) subgroup defined by the Higgs field and 

precisely reproduces the radial magnetic field of the Maxwell-Einstein theory. All other 

components of the field strength, as well as all of the covariant derivatives of *, vanish. 
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We now investigate the stability of these solutions, beginning with the case of per- 

turbations about the solution with unit magnetic charge. The problem can be simplified 

by considering only spherically symmetric configurations; this turns out to be sufficient to 

demonstrate instability. For such configurations, the metric can be written in the form of 

Eq.( l), with B and A being functions only of T and t. By an appropriate gauge choice the 

matter fields can be brought to the form 

* = v qe, qs) h(T, t) 02) 

Ai = i 0 X a,~? (1 - ~(7, t)) (13) 

where A0 = 0 because we are interested in electrically neutral solutions. (With our choice 

for 6, this reduces to the standard ansatz in flat space.) Substitution of this into the matter 

Lagrangian gives 

& 
1 

A4cxtter = - B [ 
& + $w 

1 1 
- ; $ + +p - ‘$)’ - “y 1 -V(h) (14) 

with overdots and primes referring to derivatives with respect to t and P, respectively. This 

leads to the equations 

a dmi 

-( > &t B 
i a 2huZ 1 dV - - 

l+azar 
----- 

= T2 uz dh (15) 

and 

+@gE-+q-p) =-“y)-e2uh2u2 @) 

for the matter fields, as well as equations, whose explicit form we do not need, for the metric 

coefficients A and B. To consider fluctuations about the Reissner-NordstrGm solution we 

only need keep terms linear in u, h - 1, 6B G B - BRN, and 6A E A - B&. Remarkably, 

the coupled equations separate. The equations for the metric components contain neither u 

nor h - 1, and thus cannot lead to unstable modes (otherwise there would be an instability 

in the pure Maxwell-Einstein case). The perturbation of the scalar field enters only in 

the linearization of Eq. (15), and can be shown not to lead to instability. The remaining 
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fluctuation, 21, is determined by the linearized version of Eq. (16). If we define a variable 

x by 
dx 1 
-= 
dr BRN(T) 

(17) 

so that E ranges from -co to 00 as one goes from the horizon to spatial infinity, then the 

equation for u may be written as 

Cl=<- 2 + U(x)u 

where 

U(x) = BRN(T)(~‘~‘~~ - I) (19) 

and T is understood to be a function of z determined by Eq. (17). Instability occurs if 

there are solutions of the form IL(T, t) = f(r)& with real w. Substitution of this gives 

a one-dimensional Schroedinger equation for a particle moving under the influence of the 

potential V(z). The unstable mode exists if this potential has a bound state. Since V(z) 

goes to the positive value ezztz et z: = 00, although it goes to zero et I = -00, it is 

not entirely trivial to see for what range of parameters we have a bound state. One can 

show that a bound state exists if 7~ < C(W)-’ where c is somewhat less than one, or, 

equivalently for 
CM:, 

M<x+* 
ce (20) 

As M + Merit, c approaches unity. For M > Mcyity we can bound c by a variational 

calculation. Using the variational ansatz ‘1~ = mexp(-X(r-r~)/2), we find c > 0.32. 

The physical basis for this instability is easily understood. The classical monopole 

solution has a core of radius m (ev)-‘, inside of which the Higgs field deviates from its 

vecuum value and the massive components of the gauge field are nonzero. The effect of 

this core is to remove the singularity in the energy density which would arise from a point 

magnetic charge. Its radius is determined by the balancing of the energy needed to produce 

the nontrivial matter fields against the energy cost of extending the Coulomb magnetic 

field further inward. 

Similar considerations can be applied to solutions with horizons. Here, however, we 

should only consider the region outside the horizon since singularities are allowed, and 
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even expected, inside the horizon. Looking et the case of a Reissner-Nordstrom solution 

with 7~ ZZ (en)-‘, we see that the Coulomb field has, in a sense, been extended inward too 

far. Energetically, it would be preferable to have a core region extending outward beyond 

the horizon [5]. In fact solutions of this sort, which may be viewed es small black holes 

lying within larger magnetic monopoles, can be shown to exist if v is less than a critical 

value vcr - Mp and if the mess M is not too great [4]. When they exist, the horizon 

radius r~ of these solutions is larger than that of the Reissner-Nordstrijm solution with 

the same value of M. Thus, these solutions appear to be the natural endpoints to which 

the instability of the Reissner-Nordstrom solution leads. 

We now turn to the case of multiple magnetic charge. The analysis is complicated by 

the fact that in the SU(2) theory the only configurations with higher topological charge 

which are spherically symmetric (i.e., invariant up to a gauge transformation under spatial 

rotations) are the singular solutions given by Eqs. (9) and (10) [6]. There is thus no 

spherically symmetric case to which we can restrict our consideration; instead, we must 

consider the full perturbation problem. This can be done by expanding the action in 

powers of the fluctuations about the Reissner-Nordstrom solution and examining the terms 

quadratic in these fluctuations. (The linear terms vanish because we are expanding about 

a solution.) It is convenient to use the gauge freedom to require that the orientation of 

the scalar field remain the same as in the unperturbed solution, so that 60 x i = 0. It 

is also useful to decompose the fluctuation in the gauge field into parts orthogonal to and 

parallel to 9; thus, we write 6A, = a, + c,B with 6 . al. = 0. The feet that D,i = 0 

(here, and for the remainder of this discussion, D, is the covariant derivative defined by 

the unperturbed vector potential) leads to the useful result that 6. D,a, = 0. 

Several factors simplify the process of extracting the quadratic terms in the action. 

Because D,*, F,, and Ft, all v anish for the unperturbed solution, terms containing 

the product of a metric perturbation and a matter perturbation can only arise from the 

Fe+. Fe@ term in L: ~.tt=~; it is easy to see that the only matter field that can enter here is 

cr. Further, the cross terms between a,, and c,, between a,, and 6h, end between cP and 

6h all vanish. The result is that the quadratic pert of the action may be decomposed as 

Swd(awC”>6*,b,w) = .%(c,,,&f,v) + S2(6*) + Sz(a,) 
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Since cp is the component of the fluctuation lying in the unbroken U(1) subgroup, Sr 

describes an essentially Abelian problem; we therefore do not expect it to contain any 

unstable modes. Similarly, Sr is simply the action for a neutral scalar field in a curved 

Reissner-Nordstrom background, and easily shown to give no instabilities. 

This leaves us with 

53 = J d4+r2 sin0 
1 
-a(Dpau - D,a,) . (DPa” - Dud‘) 

+5v2 a 
I 

(22) 

2 
,+. a’ + eFe+ . ae x a+ 

where indices are understood to be raised by unperturbed metric and Fe+ is the unper- 

turbed magnetic field. Note first that stability would be manifest if it were not for the 

presence of the last term in the integrand. Indeed, the instability of the n = 1 solution 

sets in as soon as this driving term can be greater in magnitude than the mass terms for 

a@ and a.+ just outside the horizon. With the aid of the inequality 

(23) 

it is easily shown that the driving term cannot be dominant, and thus stability is assured, if 

TH > J;;/( en). Conversely, exponentially growing solutions can be constructed whenever 

TH < cfi/(eu). An explicit example, which can be verified by substitution into the field 

equations derived from Ss, is given by at = a, = 0 and 

a@ = u,(r, t) sin”-‘8 as.5 x 0 

a.+ = uLn(+, t) sin”0 &O 
(24) 

where un(r,t) satisfies Eq. (la), but with es9 replaced by nest~s in the potential V(z). 

As expected, this solution is not spherically symmetric; under rotation, it transforms into 

other linearly independent solutions. Using Eq. (3), we can see that this instability is 

present whenever n s (M~/v)~ and 

M < Min,t = 
+ CM:, + 2nn% 

2ev ce (25) 

Some physical understanding of the n-dependence of this result can be obtained by 

returning to the flat space picture of a core region of radius R containing nontrivial Higgs 
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and charged boson fields, with only a Coulomb magnetic field extending beyond the core. A 

variational argument shows that the value of R which minimizes the energy is proportional 

to q5. 

This instability has significant implications for the evolution of a magnetically charged 

black hole. A Reissner-Nordstrom black hole will lose mass through the emission of Hewk- 

ing radiation [7]. In the absence of the classical instability, this process would eventually 

turn off as M approached A&it, where the Hawking temperature 

MZ TH = -!ft ,,/Mz - n/i:;,, 

2T (M + dMz - M$ 

vanishes, unless it had lost its magnetic charge in the meantime. Such a discharge could be 

accomplished by the production of monopole-antimonopole pairs in the strong magnetic 

field outside the horizon, with one particle falling into the hole and the other moving out 

to spatial infinity [S]. Pair production of monopoles with msgnetic charge l/e becomes 

significant only in magnetic fields of magnitude eM;f,,, [9]. The field et the horizon of 

a hole with charge n/e is this large only if M S Alpair N JiiMi/v [lo]. Since this is a 

factor of e smaller than Min.*, pair production is significant only for black holes which are 

already classically unstable [ll]. 

The classical instability changes this scenario. Consider first the case of a hole with 

unit magnetic charge. Thus, suppose that a single magnetic monopole falls into a large 

neutral black hole, which eventually settles down to e Reissner-Nordstrijm solution. The 

hole begins to lose mass through the Hawking process. As the mess falls below &fin,* 

and the horizon contracts within the sphere T = C(W)-r, the instability causes nontrivial 

matter fields to begin to outside the horizon. The black hole is now described by a solution 

of the type found in Ref. 4. Its horizon continues to contrect, revealing more and more of 

a monopole core. Its temperature, like that of a Schwareschild black hole, increases mono- 

tonically. While the question of its ultimate fete cannot be settled within the semiclassical 

approximation, the enswer will be the same as for a Schwaraschild black hole. If the letter 

can in fact evaporate completely, then so can our black hole. When it does so, it leaves 

behind a monopole identical to the one which had fallen in long before. 
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This picture is modified slightly if n > 1. Because the unstable modes are not spher- 

ically symmetric, the matter fields which emerge when M falls below Mi,.t do not form a 

uniform shell, but are instead localized about isolated points on the horizon. A plausible 

guess is that as the horizon contracts these grow into lumps which can eventually break 

off as unit monopoles, thus reducing the magnetic charge of the hole. Eventually only e 

single charge is left, and the evolution proceeds as described above. 

Furthermore, if M > Merit and R > (Mp/v)‘, stability is assured since 7.q > .&rev. 

Thus, a black hole could be stabilized by endowing it with a sufficiently large magnetic 

charge. However, this stabilization is not absolute. Pair production, although strongly 

suppressed, is not quite forbidden. Eventually, enough of the magnetic charge will have 

been emitted for the monopole instability to emerge. 

While these results have been obtained in the context of an SU(2) gauge theory, they 

clearly can be extended to other gauge theories containing magnetic monopoles. In some 

theories with two stages of symmetry breaking it is possible to have more than one variety 

of monopole; e.g. e heavy singly- charged monopole and a somewhat lighter (and spatially 

larger) doubly-charged one 1121. In such theories the Reissner-NordstrGn solutions of 

higher charge presumably become unstable when their horizon is comparable to the the 

size of the lighter monopole, with the singly charged solution remaining stable until it has 

shrunk to the size of the heavier one. 

One can also obtain magnetic monopole solutions in Kaluza-Klein models [13]. The 

question of whether these lead to similar instabilities is en interesting one, but is beyond 

the scope of this letter. 

Thus, the effect we have found leads to a remarkable new possibility for the evaporation 

of a black hole carrying a conserved magnetic charge. Previously, it had seemed that 

if such a hole did not somehow lose its charge the Hawking process would terminate 

before complete evaporation wes achieved. We see now that charge conservation need not 

be a barrier to complete evaporation, end that it is quite possible that e magnetically 

charged black hole could evaporate completely, leeving in its place a nonsingular magnetic 

monopole. 

We thank Hai Ren for pointing out an error in a previous version of this paper. 
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